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ABSTRACT: Quantum machine learning (QML) is an advancing field at the intersection of quantum computing and 
machine learning. Leveraging the principles of quantum mechanics, QML aims to address the limitations of classical 
machine learning by enhancing computational speed and efficiency. This review paper explores the foundational 
concepts of quantum computing, compares classical and quantum machine learning approaches, and discusses the 
current state and future potential of QML. 
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I. INTRODUCTION 
 
Quantum computing is a new computational paradigm based on the fundamental principles of quantum mechanics. 
Quantum computers may not be entirely a replacement for traditional computers but they certainly will allow us to 
extend the categories of computer-tractable problems. First of all, certain conventional tasks are ideally suited for 
quantum computers. For example, no standard hardware can generate a truly random number. That’s why the generators 
in conventional computers are referred to as spontaneous pseudo generators. This is, however, an easy task for a 
quantum computer.   
 
Quantum machine learning (QML) is the junction of machine learning and quantum computing. QML attempts to use 
the capacity of quantum computers to process data at much faster speeds than traditional computers.  QML refers to the 
use of quantum systems to incarnate algorithms that allow computer programs to improve through experience. 
 

II. QUANTUM COMPUTING FOUNDATIONS 
 
Quantum computing has been laid on the principles of quantum mechanics. The major concepts that can be leveraged 
for performing calculations are superposition and entanglement which basically means that quantum computation does 
to information what traditional quantum mechanics does to elementary particles and photons: it characterizes these 
fundamental entities by wave- and particle-like aspects. 
 
A. Classical Computer and Quantum Computer 

Unlike classical bits, which can be either 0 or 1, quantum bits (qubits) can represent both states simultaneously. 
Quantum computers’ popular success story is the factoring of large numbers. Historically, numbers were factored using 
trial division, which re- quires a three-line program. However, the three lines iterate an exponential number of times 

(2n/2) when factoring an n-bit number. This leads to an exponential expenditure of energy, The community has 
explored two options to reduce the cost of factoring numbers:  

 
1. The sub-exponential number field sieve algorithm  
2. Shor’s polynomial-time quantum algorithm was developed, albeit requiring a quantum computer that has yet to be 
built.  
 
The discovery of quantum algorithms occurred in parallel with improvements to the equivalent classical algorithms, 
leading to competition between the 100 person-years research and the special properties of quantum information This 
retelling of the quantum computer story opens the door for machine learning to contribute by making programming 
more efficient.  
While classical computers can superbly optimize small frameworks, they only find incremental changes for expansive 
frameworks such as transportation courses and item pricing. This is due to their quickly rising running time as a 
function of problem size. 
 

http://www.ijarety.in/


International Journal of Advanced Research in Education and TechnologY(IJARETY) 

                                         | ISSN: 2394-2975 | www.ijarety.in| | Impact Factor: 7.394| A Bi-Monthly, Double-Blind Peer Reviewed & Referred Journal | 

     || Volume 11, Issue 4, July-August 2024 || 

     DOI:10.15680/IJARETY.2024.1104044 

IJARETY ©                                                                 |     An ISO 9001:2008 Certified Journal   |                                               1643 

 

 

 

In the general structure of a quantum computer system,  the user interacts with a classical computer. If the problem 
requires optimization, the classical computer deciphers the user’s problem into a standard form for a quantum 
computer, such as QUBO, or into a different form if another quantum algorithm is needed. The classical computer, at 
that point, creates control signals for qubits (quantum bits) found in a cryogenic environment, accepting data from 
measurements of the qubits. A number of classical electronics are kept in the cold environment to minimize heat 
through wiring over the cryogenic-to-room-temperature gradient.  
Quantum computer components operated at room temperature unavoidably acquire error from the thermal movement of 
the atoms in the computer’s structure. The errors must be evacuated by quantum error correction, however the error 
accumulation rate is too high for practical removal unless the components are cooled to millikelvins, or thousandths of 
a degree above absolute zero—273.15 °C or 0 K. The architecture of these quantum– classical hybrid computers is 
zeroing n on the structure shown in Figure 2. The qubits (quantum bits) must be kept at a temperature of approximately 
15 mK. They need support from classical superconducting electronics based on Josephson junctions operating at 
temperatures around helium’s boiling point, or 4 K.  
 

 
FIGURE 1- A. Hellemans, “Europe Bets €1 Billion on Quantum Tech,” IEEE Spectrum, 22 Jun. 2016; 

spectrum.ieee.org computing/hardware/europe-will-spend-1-billion-to-turn-quantum-physics-into -quantum-

technology. 

 

B. Qubits and Superposition:  

A qubit is a vector of length 1 in a two-dimensional complex Hilbert space, capable of representing both 0 and 1 
simultaneously. The state of a qubit is given by  ∣q⟩=c0∣0⟩+c1∣1⟩ 
 where c0 and c1 are complex numbers with ∣c0∣2+∣c1∣2=1. This superposition enables quantum computers to process 
multiple possibilities at once, exponentially increasing computational power. 
 

C. Quantum Registers and Entanglement 

Quantum registers consist of multiple qubits, allowing for the representation of all possible combinations of bit 
sequences. Entanglement enables quantum computers to perform highly parallel computations, where the state of one 
qubit can depend on the state of another, even when separated by large distances. This phenomenon, known as 
entanglement, is crucial for the parallelism that quantum computing offers. Two types of processes can be applied on 
such quantum registers:  
 Quantum dynamics, which are unitary transformations (rotations and reflections) of |Q⟩. These unitary 
transformations are reversible and fully deterministic.  
 Measurements: These are projections combined with normalizations. For our purposes this means that a 
measurement M maps the state |Q⟩ of a quantum register stochastically onto one of the basis states |b1b2 . . . bn⟩. The 

probability for this to happen is given by |cb0 b1 ...bn |
2 .  

A measurement is irreversible and surjective (which implies that in a measurement, one loses information).  
It helps to imagine a quantum computation as a series of unitary operations (true quantum operations) finalized with 
one measurement (more involved schemes are used, though). Importantly, rotating |Q⟩ affects ‘‘all basis states at 
once’’. Thus, a quantum computer is a highly parallel supercomputer. The concept of entanglement implies that the 
combined state of qubits contains more information than the qubits have independently. 
Physically, there is in general no way to interpret the entangled state of a quantum register in terms of a collection of 
individual qubits. In order to manipulate qubits, quantum circuits are used. These circuits are similar to their classical 
counterparts but they contain additional logical operators and gates.  
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D. Quantum Gates and Circuits 

Quantum circuits manipulate qubits using gates which creates superpositions and induce entanglement. These gates 
perform unitary transformations, essential for quantum computations. Quantum circuits are constructed using a 
combination of these gates, designed to solve specific problems by transforming initial quantum states into desired 
outcomes. One of the gates is the Hadamard gate which brings qubits in a superposition.  

Another important type of operator are the controlled Pauli-gates. Single qubits can be visualized as points on a two-
dimensional sphere, the so called Bloch-sphere. The Bloch-sphere is embedded into a three-dimensional space with 
coordinate axis x, y, z. Note well that these coordinates have no direct relation to the actual physical space, but are 
primarily a consequence of a specific representation of qubits  
Controlled manipulation of qubits can then be understood as rotations around the x, y, z-axis, and consequently, these 
gates are also called controlled X-, Y- and Z-gates. As it turns out, since these rotations of one qubit depend on the state 
of another qubit, the application of such a controlled gate leads to quantum entanglement. 
 

III. QUANTUM MACHINE LEARNING APPROACHES 
 

This section explores how quantum computing enhances machine learning, focusing on kernel-based support vector 
machines (SVMs) and quantum neural networks (QNNs).  
 
A. Kernel-Based SVMs: Classical vs. Quantum Approaches 

Classical SVMs or quantum support vector machines (QSVM)  use feature functions and kernel tricks to classify data 
points in higher-dimensional spaces. Quantum SVMs leverage quantum circuits to transform classical data into 
quantum states, enabling the exploitation of exponentially large state spaces for improved classification accuracy. 
Quantum SVMs can potentially classify data with higher precision and speed due to their ability to perform 
computations on a massive scale. A feature function φ(x⃗) is a mapping of a data point x⃗ into feature space of higher 
dimension. This is advantageous for classification because it opens up more possibilities for a hyperplane to separate 
data point of different classes. The so-called kernel trick allows re-writing of a linear decision function used by SVMs 
in terms of a dot product between data points. In combination with a feature function, it can be further substituted with 
a kernel function  

k(x⃗, x⃗(i)) = φ(x⃗)T · 

φ(x⃗(i)), for a given training data point x⃗(i) and a data point x⃗ for which the decision is made. The decision function in 

its final form f (x⃗) = b + iαik(x⃗, x⃗(i)) introduces a shortcut i  to the explicit calculation of the dot product between 
feature vectors, which can be of infinite dimension. Furthermore the resulting function is linear in the feature space. 

The part iαik(x⃗,x⃗(i)) of the function is called kernel-i.  

 
FIGURE 2. Example of a quantum kernel based on the Pauli-feature-map. For simplicity, the figure only shows parts 

of the circuit. 
 
 
B. Quantum Neural Networks (QNNs) 

QNNs utilize quantum circuits to encode input features, evolve quantum states with trainable parameters, and measure 
final states for classification. This approach promises significant speed-ups over classical neural networks for specific 
tasks. QNNs can potentially handle larger and more complex datasets due to the inherent parallelism of quantum 
computing. 
The design of the quantum neural network is inspired by previous work of Havlicek and Thomsen. The general 
architecture of the quantum circuit is shown in Figure 3a and consists of three parts. The first part is the feature map 

U8(x⃗) which is used to encode the input features of the used dataset into quantum states. The second part is the 

variational model W (θ ) which evolves the quantum states of the system using trainable parameters θ. The final layer 
consists of the measurement of the final states.  
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FIGURE 3. Architecture of the variational quantum circuits used in the QNN experiments. 

 
C. Quantum Reinforcement Learning 

Quantum reinforcement learning applies quantum computing principles to reinforcement learning algorithms. By 
utilizing quantum states and operations, these algorithms can explore and optimize policies more efficiently than 
classical counterparts, offering potential advancements in areas such as robotics and autonomous systems. 
 
 

IV. LITERATURE REVIEW 
Recent advances in QML, quantum simulation, and quantum-enhanced optimization highlight the potential of hybrid 
quantum-classical algorithms. These algorithms use classical computers to assist quantum processors in parameter 
optimization, enabling practical applications in the near term. 
 
A. Quantum Boltzmann Machines 

Research on quantum Boltzmann machines focuses on leveraging quantum resources for accelerated neural network 
training. Restricted Boltzmann machines (RBMs) are particularly suitable for quantum implementations due to their 
connections with the Ising model. Quantum RBMs can potentially learn complex probability distributions more 
efficiently than classical RBMs. 
 
B. Quantum Annealing 

Quantum annealing exploits quantum phenomena such as tunneling and superposition to solve optimization problems. 
This method is effective for finding optimal configurations in large solution spaces, making it ideal for specific 
machine learning tasks. Quantum annealing has shown promise in solving combinatorial optimization problems, which 
are challenging for classical algorithms. 
 
C. Quantum Support Vector Machines (QSVM) 

QSVMs utilize quantum kernels to map data into higher-dimensional spaces, enhancing the ability to classify complex 
datasets. QSVMs can potentially offer significant improvements in classification accuracy and computational efficiency 
over classical SVMs. 
 

V. A VISION FOR FUTURE APPLICATIONS 
 
QML has the potential to revolutionize various fields by addressing complex problems with unprecedented efficiency. 
However, practical challenges such as building robust quantum-classical hardware and developing cryogenic 
environments for quantum components must be overcome. 
The triad of quantum computing, machine learning, and a continuation of Moore’s law could possibly address a broad 
class of problems, with only distant competitors.  
 
There will be technical challenges beyond just building hybrid quantum– classical hardware. The computer industry 
has been producing chips intended to operate at room temperature, which was convenient. A quantum–classical 
computer, however, has unique capabilities that require a cryogenic environment. Materials, devices, and circuits for 
this environment are known but haven’t been refined to the same level of manufacturability as semiconductors.  
Classical computers’ rapid emergence has stretched society’s ability to assimilate their capabilities, creating concerns 
regarding cybersecurity, robots and AI, social media, and so on. Rolling out quantum machine learning products could 
introduce simi- lar issues, but they should be seen as challenges to overcome, not reasons to hold back progress or 
ignore the uncomfortable questions they present.  

http://www.ijarety.in/


International Journal of Advanced Research in Education and TechnologY(IJARETY) 

                                         | ISSN: 2394-2975 | www.ijarety.in| | Impact Factor: 7.394| A Bi-Monthly, Double-Blind Peer Reviewed & Referred Journal | 

     || Volume 11, Issue 4, July-August 2024 || 

     DOI:10.15680/IJARETY.2024.1104044 

IJARETY ©                                                                 |     An ISO 9001:2008 Certified Journal   |                                               1646 

 

 

 

A. Technical Challenges 

The development of quantum-classical hybrid systems requires significant advancements in materials, devices, and 
circuits designed for cryogenic environments. Overcoming these challenges is crucial for the widespread adoption of 
QML technologies. Additionally, error correction and noise reduction in quantum computations remain significant 
hurdles. 

 
B. Societal Implications 

The integration of QML into society may introduce new concerns related to cybersecurity, AI ethics, and data privacy. 
Addressing these issues is essential for the responsible development and deployment of quantum technologies. 
Ensuring the ethical use of QML and mitigating potential risks will be critical for gaining public trust and acceptance. 
 

VI. CONCLUSION 
 

Quantum machine learning represents a promising frontier in computational science, offering solutions to problems that 
classical methods cannot efficiently address. Continued research and development in QML will pave the way for 
groundbreaking applications in various domains, transforming our approach to data processing and analysis. As the 
field progresses, collaborations between academia, industry, and government will be crucial in overcoming technical 
challenges and realizing the full potential of QML. 
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